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Abstract 

Background:  Retinal vessel segmentation benefits significantly from deep learning. Its performance relies on suf-
ficient training images with accurate ground-truth segmentation, which are usually manually annotated in the form 
of binary pixel-wise label maps. Manually annotated ground-truth label maps, more or less, contain errors for part of 
the pixels. Due to the thin structure of retina vessels, such errors are more frequent and serious in manual annotations, 
which negatively affect deep learning performance.

Methods:  In this paper, we develop a new method to automatically and iteratively identify and correct such noisy 
segmentation labels in the process of network training. We consider historical predicted label maps of network-in-
training from different epochs and jointly use them to self-supervise the predicted labels during training and dynami-
cally correct the supervised labels with noises.

Results:  We conducted experiments on the three datasets of DRIVE, STARE and CHASE-DB1 with synthetic noises, 
pseudo-labeled noises, and manually labeled noises. For synthetic noise, the proposed method corrects the original 
noisy label maps to a more accurate label map by 4.0–9.8% on F1 and 10.7–16.8% on PR on three testing datasets. For 
the other two types of noise, the method could also improve the label map quality.

Conclusions:  Experiment results verified that the proposed method could achieve better retinal image segmenta-
tion performance than many existing methods by simultaneously correcting the noise in the initial label map.

Keywords:  Retina image segmentation, Label map correction, Noise-tolerant, Reliability estimation, Temporal 
statistics
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Background
Retinal fundus images as an essential kind of medical 
image are widely used in the early screening and diagno-
sis of ophthalmologic diseases. Segmenting blood vessels 
from the retinal fundus image is important for the auto-
matic detection of fundus retinopathy and has drawn 
much interest in recent years. With the development of 

deep learning in analyzing medical images, research-
ers have proposed many effective deep learning-based 
methods such as [1–3]. Most of them rely on supervised 
learning strategies that require a large number of train-
ing samples with accurate annotations to obtain a well-
learned model. However, because of the thin structure 
of retina vessels and the high accuracy requirements of 
the dense pixel labels, retina vessel segmentation labels 
rely on professional clinical ophthalmologists to annotate 
the retinal fundus images pixel by pixel, which is a time-
consuming, laborious, and expensive work. This severely 
limits deep learning models’ wide application in actual 
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auxiliary diagnosis. To tackle this bottleneck, researchers 
try to relax the restrictions on label accuracy. They adopt 
more economical methods of obtaining labels, such as 
hiring junior medical staff to annotate, crowdsourcing, 
or pseudo labeling. All the above methods for obtaining 
cheap yet noisy label maps on a new unlabeled dataset 
come up with the same problem: How to fully utilize the 
correct labels in the noisy label maps to train the model 
while defending the bad effect from noisy labels to the 
training?

This problem is named as learning with noisy labels 
(LNL) in many works  [4, 5]. Existing methods on LNL 
are mainly designed for the classification tasks on natu-
ral images [4–8]. Among them, Co-teaching [7] is a sim-
ple yet effective strategy that uses the agreement of the 
predictions from two differently initialized networks 
to select potential correct labels from the low-quality 
label sets to train the model. Tanaka et al.  [5] proposed 
a framework on LNL which jointly optimizes the net-
work parameters and estimates true labels. Though most 
of these methods could not be directly applied to the 
semantic segmentation tasks due to the dense prediction 
pattern in segmentation, they inspired many methods 
on LNL in the segmentation tasks  [9–12]. Among these 
methods, Li et al. [12] proposed a robust framework that 
could progressively prompt the quality of the labels as 
well as the learned models. It corrects the noisy labels 
by iteratively aggregating the current network predic-
tion with the initial noisy labels through a moving aver-
age strategy. Nevertheless, the framework proposed by Li 
et al. [12] directly uses the smoothed prediction values to 
modify the labels. This method may also mistakenly cor-
rect the labels, leading to further accumulation of errors 
in the subsequent training process. To avoid accumulat-
ing errors, Liu [13] et al. utilized a mutual learning strat-
egy to estimate the reliability of the labels. In medical 
image segmentation, Xue et al. [11] and Zhang et al. [14] 
proposed two similar mutual learning frameworks which 
train three networks simultaneously and treat the agree-
ment of two networks as clean labels to train another 
network. Though the mutual learning strategy could 
fully utilize the random initialization of different network 
parameters, it costs high GPU memory and computation 
to train multiple networks at the same time. In real appli-
cations, a more flexible and lightweight noise-tolerant 
solution is desired for medical image segmentation.

The critical problem in designing such a method is 
evaluating the accuracy between the predicted labels 
trained on noisy labels and the given noisy labels them-
selves. One basic assumption in many studies based on 
consistency and regularization  [15, 16] is that: in the 
process of deep model training, there will be multiple 
periods of random exploration. The correct label is more 

steadily close to the predicted value among these periods. 
Inspired by this point of view, we propose a joint frame-
work for the noise-tolerant retinal vessel segmentation 
task that simultaneously trains the network and corrects 
the noisy labels. The framework combines the advan-
tages of Li et al. [12] to update annotations efficiently and 
iteratively. Differently, we propose an estimation method 
for the reliability of both labels and predictions. Based 
on this estimation, we construct a time memory loss 
for robust training and a label correction compensation 
mechanism for more accurate label correction. To verify 
the method proposed in this paper, we conduct experi-
ments on three public retinal blood vessel data sets and 
analyze the model’s accuracy under three different types 
of noise: synthetic noises, pseudo-labeled noises, and 
manually labeled noises. The results show that the pro-
posed method can still effectively maintain the accuracy 
of blood vessel segmentation under a large proportion of 
noise without the help of additional true labels.

In summary, we make the following contributions in 
this paper:

•	 An efficient framework for noise-tolerant retinal ves-
sel segmentation that can estimate the reliability of 
both the labels and the predictions;

•	 a temporal memory loss for robust training;
•	 a label correction compensation mechanism for more 

accurate label correction.

Related works
Retina vessel segmentation is a task with long studying 
history [17] and quite a lot of mature methods [18]. Ben-
eficial from the development of deep learning, the cur-
rent SOTA methods [19, 20] have achieved fairly accurate 
prediction results on the widely used public datasets, 
such as DRIVE [17], STARE [21], CHASE [22]. However, 
seldom of them focus on how to eliminate the noisy label 
map caused by reasons like observer variety, which could 
degrade the segmentation accuracy [23]. In this work, we 
aimed to rectify the noisy label map and improve the seg-
mentation accuracy in the meantime.

Rectifying segmentation label map is a branch of stud-
ies of learning from noisy labels  [24] (LNL). Since data-
sets with both noisy labels and carefully-checked clean 
labels, e.g., WebVision [25], only provide data and evalua-
tion for LNL of classification task, existing studies of LNL 
mainly focus on the classification task. Some of them 
studied the task of reducing the bad effect of noisy labels 
on the network by reweighting the noisy labels in loss 
functions [4, 7, 26] or dropping the noisy labeled samples 
in data sampling [27, 28]. To distinguish the noisy labels 
from all the labels, strategies like generative learning [29, 
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30], contrastive learning [31], entropy minimization [32], 
consistency regularization  [33, 34] and pseudo labe-
ling [35] are widely used and developed to many variants. 
These strategies also inspired many recent works on LNL 
of segmentation tasks. Unlike classification, segmenta-
tion is a dense prediction task. Even pixel-wise noisy 
labels have contextual information with their neighbor 
pixels, which is not suitable for reweighting or dropping 
them independently. In recent years, many studies  [36, 
37] focused on semi-supervised LNL on segmentation. 
However, they still need clean labels to provide essential 
information on distinguishing noisy labels. In this work, 
we are targeted at the task of unsupervised rectifying 
noisy label maps in retina vessel image segmentation, 
which could only provide noisy label maps with position-
unknown clean labels.

Existed unsupervised segmentation label map rectify 
methods are mainly based on strategies like consist-
ency regularization  [11] and pseudo labeling  [11, 12]. 
Xue et  al.  [11] proposed a framework that could cor-
rect the noisy boundary annotations without knowing 
clean annotations on chest X-ray images. Inspired by the 
ideas of Co-teaching [7], they jointly trained three inde-
pendent networks and treated the agreement of each 
two networks as correct annotations for the other one’s 
training. However, since the three networks share the 
same architecture and input, they may end up learning 
homogeneous knowledge and suffer from coupled noises 
that hinder the further improvement of label map  [36]. 
Li et al. [12] studied the same task but on natural image 
datasets. They proposed a framework that directly uses 
the network’s prediction label map to change the super-
vised label maps iteratively. However, the training of the 
network is still affected by the noisy label maps and the 
correctness of the label map changes is hard to guar-
antee, highly relying on the network’s predicted label 

map accuracy. Our work is based on Li et  al.  [12] but 
with important improvements on both training with 
noisy label maps and distinguishing incorrect label map 
changes.

Methods
Overview
Given the retina vessel images and segmentation label 
maps with error pixel-wise labels, we aim to train a seg-
mentation model with them and simultaneously correct 
the errors in the noisy label maps. We illustrate the pipe-
line of our method in Fig. 1, which contains two modules.

•	 Segmentation training module (STM) G denotes the 
segmentation network, which is trained for C cycles 
(each cycle contains E epochs) on the training set 
with the following loss 

 where E is the criterion loss function, S and L denote 
the predicted segmentation label map generated by G 
and the supervised label maps, respectively.

•	 Label correction module (LCM) After each cycle 
of training, we correct the given label maps (with 
noises). Specifically, inspired by  [12], we consider 
the current label correction compensation Qj in each 
cycle j and the initial label maps L0 for updating the 
current corrected label maps in cycle j

which is used for training G at the (j + 1)-th cycle. Spe-
cially, the label maps of cycle 1 is also equal to L0 . The 
details of the above two modules will be discussed in the 
following.

(1)L = E(S,L)

(2)

Lj+1 =
1

j + 1
· L0 +

j

j + 1
·Qj , j = 1, 2, . . . ,M

Eq. (5)

Memory Bank

Network

Cycle j, epoch
e

Training Label correction
Replace Eq. (2)

Fig. 1  An illustration of the proposed framework
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Temporal memory loss (TML) for training
Since the initial label map L0 is with noises, we aim to 
find a more accurate label map as supervision in training 
G. The key problem lies in estimating the current label 
maps L in Eq. (1) in each cycle. A straightforward idea is 
to use the updated label map Lj as Qj in Eq. (2) like most 
previous works  [12]. However, the updated label map 
cannot be considered completely accurate, especially in 
the early training cycles. In this work, we propose a tem-
poral memory mechanism for improving the robustness 
of the supervision during training.

Specifically, while training the network G in the cycle 
j, we record the historical segmentation prediction Se at 
each epoch e and calculate the best pixel-wise predictions 
of this cycle. For example, at e-th epoch in cycle j, the 
best historical prediction at each pixel (x, y) is defined as

where u ∈ {1, 2, . . . , e} denote the epoch index in cycle 
j, and Sux,y and Ljx,y denote the value at the pixel (x, y) on 
Su and Lj , respectively. We then combine S̃ex,y by all pix-
els and get the best historical prediction S̃e . For the next 
epoch e + 1 in this cycle, we replace the loss function in 
Eq. (1) with

where � is a preset weight and set as 0.1.
We explain the rationale of the proposed unsupervised 

loss. On the one hand, if the given label Ljx,y on pixel (x, y) 
is correct, the S̃ex,y will always be better than the predic-
tion Sex,y and guide the optimization in the ideal direction. 
On the other hand, if the label Ljx,y is incorrect, the his-
torically learned S̃ex,y is less noisy than the label Ljx,y , this 
manner could reduce the bad effect of the noisy label. 
This is because the network pretends to learn simple pat-
terns first  [23], and here the correct (pixel-wise) labels 
often have more consistent and simple patterns to learn 
than the various noisy labels.

In the following, we discuss the details of the training 
as illustrated in Fig. 2. We first train the network with ini-
tial noisy label maps L0 for several epochs as initialization 
following by multiple cycles of training. At the beginning 

(3)S̃ex,y = Skx,y, with k = arg min
u

|Sux,y − L
j
x,y|,

(4)L = E
(
Se, S̃e

)
+ � · E

(
Se,Lj

)

of each cycle, we train the network for T epochs only 
consider the second item of Eq. (4) without the weight as 
loss function. This is because the recorded historical best 
prediction used in the first term in Eq. (4) needs several 
epochs to accumulate. After that, we train the network 
for next E − T  epochs using the loss defined in Eq. (4).

Spatial confidence aware label correction
In this section, we discuss the label map correction strat-
egy in Eq.  (2), particularly for the label correction com-
pensation Qj . Previous works  [12] directly use the final 
predicted segmentation map in cycle j namely Sj as Qj , 
which may be incredible because of under-fitted train-
ing and noisy-label supervision. While only using the S̃j 
as Qj is not always the best, since the S̃jx,y will be worse 
than Sjx,y at the pixels guided by the incorrect label Ljx,y . 
In this work, we propose a spatial confidence aware label 
correction strategy to obtain a more reliable Qj from 
the predicted segmentation maps. Specifically, we esti-
mate the uncertainty of the prediction by the difference 
between its historical best and worst predictions, which 
could be formulated as djx,y = |S̃

j
x,y − S

j
x,y| . Here, S̃jx,y is 

computed as Eq. (2) by taking the results of the last epoch 
in cycle j. Similarly, we also record the worst prediction 
S
j
x,y by replacing the minimum in Eq. (3) with the maxi-

mum operation. This way, djx,y can be taken as the range-
ability of the historical prediction results, which contrary 
reflects its confidence at each pixel. Based on this, we 
replace the final prediction Sj with S̃j using djx,y as a soft 
weight. The proposed label correction compensation is

where ⊙ denotes the element-wise multiplication, Dj is 
composed of djx,y reflecting the pixel-level confidence 
of the segmentation results. We take the segmentation 
results from Sj where the prediction confidence is high. 
Otherwise, we use the historical best prediction S̃j that is 
more stable when the confidence is low.

Implementation details
In this work, we choose the classical binary cross entropy 
loss as E in Eq.  (4) and use U-Net  [2] as network G. To 
efficiently store the S̃jx,y and Sjx,y on each pixel, we employ 

(5)Qj = Dj ⊙ S̃j +
(
1−Dj

)
⊙ Sj ,

Cycle j Cycle j+1

1 T EEpoch eInitialization

Fig. 2  An illustration of the proposed training schedule
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a dict structure, named as Memory Bank in Fig.  1, to 
record the S̃jx,y and Sjx,y according to the image index and 
the (x, y) coordinates. During training, for each image, we 
perform horizontal flipping, vertical flipping, and both of 
them respectively, to construct three augmented images. 
The memory bank will first reverse the augmentation 
operations of the augmented images on their prediction 
label maps, then calculate and record the S̃jx,y and Sjx,y . We 
use the Adam [38] optimizer with learning rate 7× 10−3 . 
Following the setting in  [12], we also use stochastic 
weight averaging method [16] to train the network.

We run our method for 100 epochs in total, the first 
50 epochs as initialization following with 5 cycles, each 
containing 10 epochs. We apply SGDR [39] learning rate 
scheduler to adjust the learning rate dynamically. The 
learning rate scheduler begins to work at epoch 40 and 
with 10 as cyclical epoch number.

Results
Setup
We evaluate two tasks in the experiments: 1) We train the 
network on the training dataset using only the noisy label 
(as the initial label) and evaluate its segmentation results 
on the testing dataset with the correct labels. 2) We eval-
uate the noisy label correction on the training dataset 
using the correct labels.

Datasets We evaluate our methods on 3 public 
benchmarks.

•	 DRIVE  [17] contains 40 retina images with size 
565× 584 , 20 images in training set and 20 images 
in testing set. Each image in the training set has 
the label map annotated by an expert (taken as the 
golden standard, i.e., correct label). Besides the cor-
rect label maps, each image in the testing set has a 
label map annotated by another annotator (taken as 
the noisy label). To satisfy our task in this work, we 

exchange the data in the training set and testing set 
and denote the new dataset as DRIVE(R).

•	 STARE (VK) [21] contains 20 images with the resolu-
tion of 605× 700 : first 10 in the training set and the 
other 10 in the testing set.

•	 CHASE [22] contains 28 retina images with the reso-
lution of 999× 960 : first 14 for training and the other 
14 for testing. In these two datasets, each image 
has two label maps annotated by two annotators. 
According to the official description, the label maps 
from one expert are taken as the golden standard.

Comparison methods We include following 3 methods 
for comparison.

•	 U-Net: We select a famous network architecture for 
image segmentation namely U-Net  [2] as the base-
line, which maintains the same backbone network 
and training settings as ours.

•	 Cas [11]: A method for chest X-ray image segmenta-
tion task, which also provides the noisy label correc-
tion results.

•	 SF  [12]: A state-of-the-art method for noisy label 
based human parsing and label correction.

Pollution sources We use three types of pollution sources, 
i.e., (1) synthetic noisy label maps, (2) label maps gener-
ated by pseudo labeling, and (3) manually labeled noisy 
label maps to evaluate the label correction performance 
of our method and the comparison methods. Examples 
of them are shown in Fig. 3b–d respectively. The original 
label map is shown in Fig. 3a for comparison.

•	 We apply the method in [9] to generate the synthetic 
noisy label maps. We approximate the contour of 
the retina vessel using the combination of line seg-
ments using the tool OpenCV. This could result in 
pixel label deletion, shifting, and inaccurate contours, 

Manually Labeled Noise

(d)

Synthetic Noise

(b) (c)

Pseudo Labeling NoiseCorrect Label Map

(a)
Fig. 3  Noisy label maps from different pollution source: a correct label map without noise, b label map with synthetic noise, c label map with 
pseudo labeling noise, d label map with manually labeled noise
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which is to simulate the noises in roughly annotat-
ing retina vessel images. We control the parameter 
of approximation accuracy and generate noisy label 
maps with three aggravated pollution levels, named 
as LV-1, LV-2, and LV-3.

•	 For unlabeled segmentation datasets in practi-
cal scenes, pseudo label maps generated by models 
trained on other similar labeled datasets are often 
used as low-cost noisy supervision. So we also collect 
pseudo label maps of DRIVE (R) and STARE (VK) 
datasets generated by existing published work [40] as 
shown in Fig. 3c.

•	 The manually labeled noisy label maps are from the 
manual label maps (other than the golden standard) 
provided by the above three datasets.

All of the noisy labels for the three datasets used in this 
work are submitted as described in the section of Addi-
tional Files, Additional file 1.

Results of label correction
We first evaluate the noisy label correction performance 
in Table  1. Specifically, we compare the original noisy 
label with the corrected label generated by different 
methods using standard segmentation metrics, includ-
ing the F1 score and area under the precision-recall curve 

(PR score). As shown in Table 1, the results in ‘Baseline’ 
denote the accuracy of the labels under different polluted 
sources.

The proposed method consistently outperforms all 
the other methods in all the benchmarks for the syn-
thetic noises, especially in LV-3  groups. It corrects the 
original noisy label maps to a more accurate label map 
by 4.0–9.8% on F1 and 10.7–16.8% on PR on three testing 
datasets.

For the pseudo labeling noise, the proposed method 
could also improve the quality of the pseudo label map by 
a small margin.

For the manually labeled noise, the proposed method 
shows better accuracy than other methods, especially on 
the STARE (VK) dataset, where it outperforms the SF 
method and Cas method by 1.1% and 4.4% on F1 score. 
Compared to the original noisy label maps, it obtains the 
improvement of 4.1–7.0% on F1 score on three datasets.

Testing performance boost of segmentation
We further evaluate the segmentation performance boost 
of our method and the comparison methods on the test-
ing set using the same initial noisy labels for training. 
The results are shown in Table 2 and the ‘Baseline’ here 
denotes the U-Net described in the Setup Sect. . We can 
see that the segmentation performance improvement of 

Table 1  Comparative results of prediction on the testing set (%)

The values with bold denote the best performance in each group

Dataset DRIVE(R) STARE(VK) CHASE

Group Method F1 PR F1 PR F1 PR

LV-1 Baseline 73.2 76.0 75.7 77.7 81.9 82.8

Cas 76.1 83.5 72.6 78.8 79.9 87.8

SF 78.4 87.8 78.0 87.1 85.5 93.9

Ours 79.6 88.6 79.9 88.4 85.9 94.1
LV-2 Baseline 70.2 72.8 72.3 74.2 77.2 78.3

Cas 75.1 82.0 72.9 79.8 77.4 85.4

SF 75.7 84.5 77.3 86.0 83.6 92.2

Ours 77.6 87.1 78.9 87.3 84.3 92.6
LV-3 Baseline 67.2 69.6 69.4 71.3 73.8 74.9

Cas 75.1 82.3 71.1 76.9 77.7 85.4

SF 73.2 82.4 75.0 83.5 82.4 91.0

Ours 77.0 86.4 77.6 86.4 83.1 91.4
Pseudo Baseline 79.3 87.2 76.0 83.9 / /

Cas 75.7 82.8 74.0 81.3 / /

SF 80.0 88.1 76.7 84.8 / /

Ours 80.3 88.5 76.5 84.2 / /

Manual Baseline 78.9 79.9 72.2 76.0 76.3 78.2

Cas 78.1 85.8 73.4 79.8 78.8 81.8

SF 82.8 91.2 76.7 84.1 82.7 90.4

Ours 83.0 91.3 77.8 84.3 83.3 91.1
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the proposed method is also superior compared with oth-
ers in most experiments. Notably, when the level of syn-
thetic noise is serious, e.g., LV-3, the proposed method 
could also boost the segmentation performance of the 
network while other two methods fail in some cases, e.g., 
those on DRIVE (R) and STARE (VK).

Cross‑datasets validation
To evaluate the generalization ability of the proposed 
method and other compared methods, we use the models 
trained on the DRIVE(R) dataset to predict segmentation 
label maps on the test set of the STARE dataset and the 
other way round for cross-datasets validation. The results 
are shown in Table 3.

From Table  3, we can see a performance decrease of 
all the methods on both of the datasets, especially the 
STARE dataset. This is because the images and annota-
tions have a domain gap between these two datasets 
with different capturing devices and different human 
annotators. However, the proposed method still achieves 
considerable high performance in the cross-datasets 
validation and outperforms other compared methods 
in all the metrics across different noise settings. Even in 
the high synthetic noise groups like LV-3, the proposed 
method still gets the F1 score over 70.0 on both the 

Table 2  Comparative results of prediction on testing set.(%)

The values with bold denote the best performance in each group

Dataset DRIVE(R) STARE(VK) CHASE

Group Method F1 PR F1 PR F1 PR

LV-1 U-Net 73.9 82.9 79.6 87.4 77.4 85.8
Cas 73.6 81.9 75.1 82.1 73.4 80.7

SF 76.3 84.9 80.4 88.2 76.5 84.7

Ours 76.8 85.5 81.3 88.9 77.5 85.3

LV-2 U-Net 74.5 81.3 79.1 87.3 70.7 78.4

Cas 73.4 82.0 74.4 82.0 73.1 80.5

SF 73.7 82.4 80.0 87.6 75.3 82.9

Ours 75.9 84.8 80.8 88.1 75.9 83.4
LV-3 U-Net 72.3 81.4 78.6 86.4 70.1 77.0

Cas 72.2 80.2 69.7 76.1 69.9 76.6

SF 72.0 80.3 76.9 85.3 74.4 81.5

Ours 75.7 84.3 79.2 87.0 74.8 82.8
Pseudo U-Net 78.1 86.5 80.1 88.3 / /

Cas 74.0 82.2 75.8 83.8 / /

SF 78.5 87.0 80.3 88.5 / /

Ours 78.7 87.2 80.6 88.6 / /

Manual U-Net 80.2 88.7 80.0 87.9 77.7 85.0

Cas 76.5 85.1 73.8 81.1 73.9 81.0

SF 80.9 89.5 81.3 88.7 79.4 87.2

Ours 81.3 89.8 82.0 89.1 80.0 88.0

Table 3  Cross validation on DRIVE(R) and STARE datasets.(%)

The values with bold denote the best performance in each group

Dataset DRIVE(R) STARE(VK)

Group Method F1 PR F1 PR

LV-1 U-Net 68.5 75.6 70.3 78.6

Cas 36.0 36.0 70.8 74.8

SF 65.0 71.2 72.2 80.2

Ours 73.9 81.2 74.5 82.3
LV-2 U-Net 68.7 74.6 70.1 77.3

Cas 47.0 48.5 72.4 79.8

SF 66.7 72.6 70.9 78.3

Ours 71.8 79.0 73.0 79.9
LV-3 U-Net 49.0 46.1 67.0 74.7

Cas 50.0 54.5 70.5 77.9

SF 67.8 73.5 68.7 76.4

Ours 70.2 76.4 70.5 78.4
Pseudo U-Net 57.4 62.7 72.2 78.1

Cas 49.6 52.2 76.9 83.5

SF 70.9 76.9 74.7 81.1

Ours 76.3 84.4 77.8 85.7
Manual U-Net 55.3 59.7 70.6 77.3

Cas 61.9 68.3 75.5 82.0

SF 65.9 71.3 74.9 82.7

Ours 71.4 78.6 77.1 83.6
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DRIVE(R) and STARE datasets. The experimental results 
support that the proposed method has a good generaliza-
tion ability under different levels of label noises.

Qualitative study
We show the cases of corrected label maps of different 
types of noise in Fig. 4. We could see that the proposed 
method tends to correct the noisy labels carefully while 
preserving the correct labels unchanged. The compared 
methods either couldn’t correct the noise or failed to 
preserve the correct labels unchanged, such as the cases 
shown in lines 1, 4, and 5 in Fig. 4. Besides, the proposed 
method could generate more accurate boundary and 

thickness of the vessels than the compared methods, 
such as the cases shown in lines 2 and 3 in Fig.  4. This 
could be explained by the proposed method considering 
both the noisy labels in training and noisy predictions in 
label correction. Thus, for example, if the labels of the 
vessel are thicker than its correct labels at the bound-
ary, the network in the proposed framework will not be 
directly influenced by the noisy labels, which otherwise 
may result in thicker vessel predictions. The full cor-
rected label maps are shown in Fig. 6.

Synthetic

LV-2

LV-3

Pseudo

Manual

Origin Cas Sf OursLV-1 GT

Fig. 4  Visual results of the corrected label maps on training set of the comparison methods and the proposed method
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Fig. 5  Change curve of train loss, test loss, and the label correction performance with the training epoch increasing

Origin Cas Sf OursSynthetic

Pseudo

Manual

LV-1

LV-2

LV-3

GT

GT

GT

Fig. 6  Full visual results of the corrected label maps on training set of the comparison methods and the proposed method
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Training‑testing curve
We further show the training-testing loss curve and the 
F1 curve of label map correction in Fig.  5 to understand 
the training procedure better. As mentioned in the Imple-
ment Details Sect. , we train the whole framework for 100 
epochs and start the first cycle of label correction and test-
ing at epoch 50. From Fig. 5 we could see that the testing 
loss curves continuously decrease during multiple train-
ing cycles. While the training loss curves are almost con-
stantly reducing as well, except that at the beginning epoch 
of each cycle, it will get a small peak. This is because the 
label map is corrected at the end of each cycle, and the 
SGDR learning rate scheduler will warm up at the begin-
ning of each cycle. The two curves support that the pro-
posed method is not over-fitted to the evaluated datasets. 
Besides, the F1 curve of label map correction is also con-
tinuously increasing. The progress of network training and 
label map correction will promote each other and further 
boost the performance of the whole framework (Fig. 6).

Ablation study
In this section, we apply the ablation study to the label 
map correction task. We consider the following varia-
tions of the proposed method.

•	 w/o TML: We remove the proposed temporal mem-
ory loss, i.e., only use E(Se,Lj) as loss function in 
Eq. (4).

•	 w  Sj : Replacing Qj with Sj in Eq. (5).
•	 w  S̃j : Replacing Qj with S̃j in Eq. (5).

The results are shown in Table  4. Without using the 
proposed TML in training will decrease the perfor-
mance of the proposed framework among all the 
benchmarks by the range of 0.3–1.6% on F1 score and 
0.2–2.4% on PR score. Notably, when the degree of syn-
thetic noise increases, we can see a larger performance 
decrease margin if we remove TML. For example, 
on the DRIVE (R) dataset with LV -1 synthetic noise, 
removing TML brings a 1.1% decrease on PR score. 
While with LV -3 synthetic noise, the correspond-
ing performance decreases by 2.4% . Using Sj as Qj in 
Eq.  (5) will also consistently decrease the performance 
among all the benchmarks. It will downgrade the per-
formance by 0.5–2.0% on F1 score and 0.4–1.2% on PR 
score. Using the S̃j to replace Qj in Eq.  (5) is slightly 
better than the proposed Qj in some cases, especially 
in low-level synthetic noises, such as LV-1 and LV-2 on 
CHASE. However in most of the benchmarks the pro-
posed Qj is superior to the S̃j in label correction.

Table 4  Ablation study of label correction task.(%)

The values with bold denote the best performance in each group

Dataset DRIVE(R) STARE(VK) CHASE

Group Method F1 PR F1 PR F1 PR

LV-1 w/o TML 78.5 87.5 79.0 87.4 85.5 93.9

w Sj 79.3 87.7 78.9 87.2 85.5 93.8

w S̃j 79.8 88.1 79.5 87.7 86.2 94.2

Ours 79.6 88.6 79.9 88.4 85.9 94.1

LV-2 w/o TML 76.4 85.9 78.0 86.5 83.6 92.2

w Sj 76.7 85.7 78.3 86.7 83.8 92.4

w S̃j 77.1 84.7 77.9 87.0 84.5 92.6

Ours 77.6 87.1 78.9 87.3 84.3 92.6
LV-3 w/o TML 75.6 84.0 76.9 85.0 82.4 91.0

w Sj 74.4 82.9 76.0 84.4 81.3 89.0

w S̃j 77.1 84.7 77.9 87.0 84.5 92.6

Ours 77.0 86.4 77.6 86.4 83.1 91.4

Pseudo w/o TML 79.9 88.0 76.2 83.9 / /

w Sj 80.0 88.0 76.3 84.0 / /

w S̃j 80.1 87.9 76.7 84.8 / /

Ours 80.3 88.5 76.5 84.2 / /

Manual w/o TML 82.6 90.5 76.2 83.4 82.7 90.6

w Sj 82.5 90.9 75.8 83.1 82.5 90.4

w S̃j 82.6 90.8 77.6 84.7 82.8 90.1

Ours 83.0 91.3 77.8 84.3 83.3 91.1



Page 11 of 12Li et al. BMC Medical Imaging            (2022) 22:8 	

Conclusion
In this paper, we developed a new noise-tolerant method 
to train the segmentation network on noisy label maps and 
improve the quality of the initial label maps in the mean-
time. More specifically, we considered the temporal-inte-
grated segmentation prediction during network training 
at different epochs and used it for self-supervised network 
training and noisy label correction. Experiments on the 
DRIVE, STARE, and CHASE-DB1 datasets verified that 
the proposed method could achieve better retinal image 
segmentation performance than many existing methods by 
simultaneously correcting the noise in the initial label map.
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